



WOODLY LCA PUBLIC SUMMARY

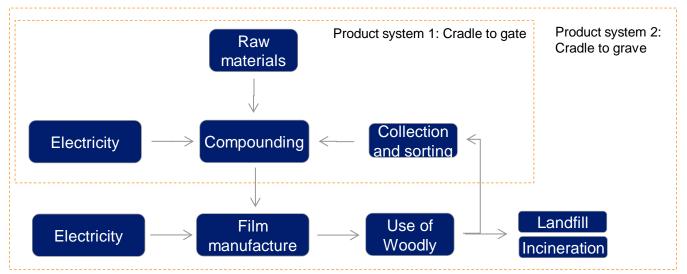
May 2019



## **GOAL AND SCOPE**

# This LCA study follows the regulations and guidelines of ISO 14040 and ISO 14044 standards for Life Cycle Assessment (LCA)

- The reason for carrying out this LCA study is to provide a well-reasoned, defensible, fact-based evaluation of the
  environmental burden of the Woodly® material. The intended audience of the results is the key stakeholders. The
  intended application of this study is to support Woodly in its communication of the environmental performance of
  Woodly® and to help identify the key points for further development of the product. Impacts of possible development
  actions are assessed by forming three scenarios: current, short to mid-term and longer-term development
- The functional unit of the study is 1 kg of Woodly® granulate. Two different product systems are included in the study: cradle-to-gate and cradle-to-grave. System boundaries of the cradle-to-gate system cover the following processes:
  - Upstream raw material manufacture from the cradle
  - Granulation
  - Energy production
  - Transports


In the cradle-to-grave system 1 kg of Woodly® granulate is processed further into film utilised as packaging and finally recycled, incinerated of landfilled. Concerning *cut-off criteria*, expert opinion is used to exclude insignificant flows

- In the study, robust data from 2016-2019 is used. It is modelled, measured and literature-based. Data completeness
  and consistency are analysed
- In this study, mainly the *life cycle impact assessment method* CML 2001 (April 2015) is used. In some impact categories, also other methods have been applied. All of the main *impact types* are included. However, the results for some impact categories are be more reliable than for the others; this has been explained in the report.



## **DATA INVENTORY**

- The LCA models have been done using GaBi software. Four main data sources for the inventory analysis were used in this study:
  - Pöyry databases and knowhow
  - Data provided by raw material suppliers of Woodly®
  - Data based on Woodly's pilot runs with collaborating companies
  - GaBi Professional datasets
- Completeness of the data inventory can be considered good. It should be noted in consistency of the data inventory, that some of the cradle-to-gate datasets for main raw materials are company-based data and some of them are theoretical
- Data is collected according to the following model:



### S PŐYRY

## RESULTS

#### Environmental impact in current situation, cradle-to-gate

| Impact category                                 | Current situation | Unit                   |
|-------------------------------------------------|-------------------|------------------------|
| Cradle-to-gate                                  |                   |                        |
| Global warming potential (including CO2 uptake) | -0,084            | kg of CO2 eqv.         |
| Ozone depletion potential                       | 2,0E-08           | kg R11 eqv.            |
| Photochemical ozone creation potential          | 3,41              | g ethene eqv.          |
| Eutrophication potential                        | 2,09              | g phosphate eqv.       |
| Acidification potential                         | 9,04              | g SO <sub>2</sub> eqv. |
| Marine aquatic ecotoxicity potential            | 688               | kg DCB eqv.            |
| Human toxicity potential                        | 0,74              | kg DCB eqv.            |
| Abiotic depletion, fossil                       | 53,5              | MJ                     |
| Particulate matter formation                    | 4,9               | g PM10 eqv.            |

#### **S** PŐYRY